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1. INTRODUCTION

The present paper has developed from a talk presented at the Summer
Seminar on Complex Analysis in Trieste, Italy, July 1980. In that talk some
basic results relating to Montessus de Ballore theorem in en were discussed.
The main result of the present paper is a "partial converse" of the Montessus
de Ballore theorem in en. The motivation for this result originated from a
paper of Walsh [5]. A modified version of the Montessus de Ballore theorem
is also presented.

Section 2 of this paper gives notations, definitions, and some properties of
rational approximants in en. Section 3 deals entirely with questions of
convergence leading to the main result. Throughout the paper, non­
homogeneous polynomials in en are employed in the construction of the
rational approximants in en.

2. NOTATIONS, DEFINITIONS, AND SOME PROPERTIES OF 7rjJ.V

Let e denote the field of complex numbers and let IN denote the set of
nonnegative numbers. Let z := (z I'"'' Zn) E en = eX· .. X en-times and i
denote a point from en - I obtained by suppressing the last one of the
variables of z in en.

Let a > 0 and Aa := {Zj E e: Izjl <a} be a disk in the Zj variable centered
at the origin so that A~ := Aa X ... X Aa n times, becomes a polydisk in en.
Let INn := IN X ... X IN n times.

We introduce the following partial ordering on INn. If a := (a p ... , an) and
[J:=(fJ1"'.,[Jn)EW then O<c.a<c.[Jo¢?O<,aj<'[Jj' O<'j<,n. Next we let
E y ;= {y E INn: 0 <c. y <c. r, r E INn}. A polynomial P,t(z) in en can be written
as
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PA(Z) = .L gA ZY
yEE..

(2.1 )

and zY = Zi' ... Z~n. Such a polynomial is said to have a multiple degree at
most A. and this will be written as m-deg(PA(z)) ~ A..

Let !J!IlV be the class of rational functions of the form RIlV(Z) = P
il
(z )/Q/z)

with Qv(O) #: 0, where m-deg(PIl(z))~.u and m-deg(Qv(z) ~ v, and for which
3p> 0 and LI: such that (PIl(z), Qv(z)) = 1, Z ELI: except on a subvariety of
codimension >2.

We now let cr(U) denote the ring of holomorphic functions in a
neighborhood U of Z = 0 and let ~(U) denote the group of units of cr(U).

DEFINITION 1. SupposefE~(U). RIlV(z)E!J!llv is said to be a (u,v)­
rational approximant to f at Z = 0 if

alAI I
azA (QJz)f(z) - PIl(z)) z=o = 0,

for il E E llv
C IN n, an index interpolation set with the properties:

(i) OEE"'v,

(ii) il E E"v ==;. y E E"v, VO ~ Y -< il,
(iii) Ell c Ell v,

(iv) IElLvl ~ DJ=l (Pj + 1) + DJ=l (vj + 1) - 1,

(v) each projected variable has the Pade indexing set.

Here IElLvl is the cardinality of E"v, a1AI /8z A== 8A1 +··· +An/(az~1 ... az~n)

and the Pade indexing set is a one dimensional index set for defining unique
Pade approximants in any projected variable.

Remark. The index set Ell c EIlV completely covers all suffixes for
indexing the coefficients of the numerator polynomial PIl (z) of any rational
approximant Rllv(z). Thus from (2.1) we have

(2.3)

(2.4)

From these equations one can compute a rational approximant. The latter,
however, fails to produce a rational approximant with some degree of
uniqueness. The question of uniqueness for rational approximants defined
above is achieved by invoking a maximality condition on E" V (see
Lutterodt [3)) and also Karlsson and Wallin [2].
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DEFINITION 2. The index interpolation set E/lV is said to be maximal if
and only if

n n

IE/lV\~ n (Pj+ 1)+ n (vj + 1)-1.
j=l j= I

For the rest of this paper we shall assume that for each pair (;.I, v), v~ IJ
and that the rational approximants discussed, are unisolvent; this means that
they are (;.I, v)-rational approximants for which E/l I

' is maximal and for
which a certain determinantal or rank condition is satisfied (see
Lutterodt (3 D. We shall normalize the denominator polynomial of the (;.I, v)­
rational approximant, dividing the latter top and bottom through by the
modulus of the former's largest coefficient. This operation leaves the
unisolvent (;.I, v)-rational approximant invariant. We denote the latter by

(2.4 )

We shall require that if P/lv(z), Q/lv(z) have any uniform limits on compact
subset as IJ tends to infinity, then these uniform limits must remain relatively
prime except on some subvariety of codimension ~ 2. Some properties of
(P, v) and (;.I, IJ) unisolvent rational approximants are highlighted by the
following theorems.

THEOREM 2.1. Suppose fEc~(U). Let 7!/lI'(z) be unisolvent (;.I, v)­
rational approximant to f in U. Then

(i) 7!/lv(z) is invertible in V c U, V being O-neighborhood.

(ii) 7!;;} is a (v,IJ)-rational approximant tof- 1 E~(U).

THEOREM 2.2. Suppose f E ~(U). Let 7!/l/l(z) be a diagonal unisolvent
rational approximant to f on U. Suppose a, b, c, dEC such that ad - bc i= O.
Then (aQ/l/l(z) + bP/l/l(z»/(cQ/l/l(z) + dP/l/l(z» is a diagonal unisolvent
rational approximant to the meromorphic function (a +bf(z»/(c +df(z»,
where c + df(z) i= O.

The next theorem also concerns diagonal unisolvent rational approximants
and their change under the biholomorphic mapping ¢: U -+ V defined by
¢(z) = (a1z1/(c1z 1 + d l ),... , anzn/(cnzn+ dn» with ¢(O) = 0, where V is
another neighborhood of z = 0 and ai' Ci' and di E C, aid; i= 0, C;Zi +d; i= 0,
i = 1,... , n.

THEOREM 2.3. Suppose fE~(U). Let ¢: U-+ V be as defined above.
Let 7!/l/l(z) be a diagonal unisolvent rational approximant to f in U. Then
7!/l/l 0 ¢ is a diagonal unisolvent rational approximant to f 0 ¢ in V.
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Proofs for the above theorems were given in Lutterodt [7] even though the
statements of the same theorems in the present paper differ from those of the
1976 paper.

3. CONVERGENCE

The main result of this section is a "partial converse" of the en-version of
the Montessus de Ballore theorem. In this section, we relax the definition of
rational approximants for f E ~(U) to include f E dr(U) with possibly
f(O) = 0 (see Lutterodt [3 D.

Let ,1 ~ be a polydisk domain centered at the origin and let U c ,1 n be an
O-neighborhood. We shall denote by 9Jll (L1~) the class of functions on en
that are holomorphic on U and meromorphic in ,1 ~ with polar sets of finitely
many sections defined by a polynomial on L1~ having minimal m-degree.
Thus iff E 9Jll (L1~) and has a polar set defined by q,,(z) = 0 with minimal m­
deg(q,,(z» = v, then we shall write Z,,(f~l) = {z E en: q,,(z) = O}.

THEOREM 3.1. Let v E IW and p > 0 be fixed. Suppose fE 9Jll(L1~) and
Z ,,(f - 1) is the pole set of f defined on ,1 ~ by q.,(z) = 0 with minimal m­
deg(q,,(z» = v so that Z,,(f-l) nL1~*0 and qJE C(J~).

Let n",.(z) be a unisolvent (j.J, v)-rational approximant to f at 0, where the
polar set of n",,(z) denoted by Q;"I(O) = {z E en: Q",,(z) = O} is such that for
sufficiently large !i, Q;}(0)(JL1~*0. Let !if = mini <;i<;n{j.JJ Then as
!if -> 00,

(i) Q;"I(O)(JL1~->Z,.(f-l)nL1~,

(ii) n",,(z) -> f(z) almost uniformly on compact subsets of ,1 ~.

Next we state the partial converse of Theorem 3.1.

THEOREM 3.2. Let p > 0 and v E IN n be fixed. Let U be an 0­
neighborhood. Suppose f E?(U) and suppose n",.(z) is a unisolvent (j.J, v)­
rational approximant to f(z) at O. Let ,1 ~ be a polydisk in en such that
U c ,1 ~ and for all !i >-!io (j.Jo being chosen in IN n),

For each fixed 6EL1~-1 cen-t, suppose the poles of n",.(6,zn) as a
rational function of a single variable in z n' are uniformly bounded with
respect to 6 and !i in IznI <p. Suppose each subsequence of {n",,(6, zn)}" of
the respective unisolvent (j.J, v)-rational approximants converges uniformly to
f(6, z n) on every compact subset of {I z nI < p} not containing limit points of
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poles of that subsequence. Thenj E 9)11(.,1:) with at most Vn codimension one
simple polar sections.

Prooj oj Theorem 3.1. We shall assume without loss of generality that
qv(z) is normalized in the same way as Q",,(z). Let H",,(z) be defined by

H"v(z) = Q",,(z) qv(z)j(z) - q,,(z) P",,(z).

Then from the hypothesis of the theorem H"v(z) E eel:)
H"v(z) Eo1""(A:); thus by the Cauchy's integral formula,

( ) - 1 f H",,(t) d
H"v

z
-(2nW TOi=1(tj-ZJ dt1 '" tn'

where T is the distinguished boundary of A:. Now

(3.1 )

and

(3.2)

(3.3)

is uniformly convergent on compact subsets of A:; thus an interchange of L
and f yields

with

H"v(z) = 2..: h",,),z'\
),ENn

(3.4 )

(3.5)

for v fixed, for all A, and alllJ. such that v <, IJ.. But from (2.2) and (2.3) using
generalized Leibnitz rule we get

al),1 I
az), [qv(z)(Q"v(z)j(z) - P",,(z))] z=o = 0,

al),1 - I
OZ), [qv(z)(Q",,(z)j(z))] z=o = 0,

Thus in the expansion (3.4) we find that,

(3.4a)

with

h =-l-f Q"v(t)qv(t)j(t) dt '" dt (3.5a)
"v), (2nit T t),+l 1 n'
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Since by design Q/lv(z) is locally bounded in en and qv(z) f(z) E C(J;), j a
constant M = M(P) such that IQ/lv(t) qv(t) f(t)1 ,:;;. M, \It E T yielding a
Cauchy-type inequality from (3.Sa) as

M
Ih/l vA 1 ':;;'pl.ll' p>O, (3.6)

where IAI= r.;= I Aj and r.h.s. of (3.6) is independent of p. Thus combining
(3.4a), and (3.6), noting E/l c E/lV, we get

(3.7)

The r.h.s. of (3.7) being a tail of a geometric series in IW tends to zero as
p' ---+ 00. Hence H/l/z) ---+ 0 pointwise in ,1; and uniformly on compact
subsets of ,1; as p' ---+ 00.

Now the sequence {Q/lv(z)} /l is locally bounded on ,1; and therefore
{Q/lv(z)}/l cY, a normal family. Thus it has uniformly convergent subse­
quence on compact subsets of ,1;. This fact together with the uniform null
convergence of H/l/z) in compact subsets of ,1;, induces a uniform
convergence of a similar subsequence of {l\v(z)} /l on compact subsets of ,1;.
If we let Qv(z) and P(z) be the uniform limits to the convergent subsequences
of {Q/l/z)}/l and {P/lv(z)}/l' respectively, then in the limit as p' ---+ 00, we
obtain from H/lv(z) ---+ 0,

Q/Z) qv(z) f(z) = q/z) P(z), (3.8)

for zELl;. Suppose aEZv(/-I)nLl;, then qvCa)=O=>
Qv(a) q/a)f(a) = O. But q/z)f(z) *- 0 except for a subvariety of
codimension> 2, therefore Q/a)=O=>aEQ;I(O)nLl;, where Q;I(O) is
the zero set of Qv(z). Thus

Zv(/-I) n ,1; c Q; 1(0) nLl;.

Conversely, aEQ;I(O)nLl;=>Qv(a)=O=>q,,(a)P(a)=O from (3.8). But
(Qv(z), P(z)) = 1 except for a subvariety of codimension> 2. Thus
q,,(a) = 0 => a E Z,,(/-') n ,1;, i.e., Z,,(/-I) nLl; ~ Q; 1(0) nLl;. Hence

(3.9)

Claim. Every subsequence of {Q/lv(z)}/l and, consequently, every subse­
quence of {P/lv(z)} /l contain subsequences that are uniformly convergent to
Q/z) and P(z), respectively, on compact subsets of ,1;.

The claim together with Vitali's theorem will ensure the uniform
convergence of the full sequence {Q/lv(z)}/l and {P/l,,(z)}/l to Q,,(z) and P(z),
respectively, on compact subsets of ,1;.

640/40/33
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To see the claim, take any subsequence of {Q"w(z)}# and its induced
subsequence of {P#v(z)}# and select, respectively, two new subsequences
from the two originally taken that converge uniformly to say, Sv(z) and
W(z), respectively, on compact subsets of ,1:. Then these satisfy (3.8) and
consequently, we obtain an analogue of (3.9) with S;'(O)(l,1~=

Zv(f-')(l,1: so that on ZvCf- ' ) (l,1;, Sv(z) = qv(z). This holds for any
uniform limits of uniformly convergent subsequences of lQ#v(z)}#. We call
the common uniform limit QvCz) = qv(z) on ZvCf- l

) (l,1: and so on ,1n. To_ (J

show that convergent subsequences of lP#v(z)} # also have common uniform
limit, suppose there are two W.(z) and W 2(z). Then these satisfy, from (3.8),

Thus we get either q.,(z) = 0 or WI(z) = W2(z) except on a subvariety of
codimension ~ 2, so that when qv(z)"* 0 in ,1: we call the common uniform
limit of uniformly convergent subsequences of lP#)z)}u' P(z). This
establishes the claim. Thus (3.9) holds for the full sequences IQuv(z)}# and
{Puv(z)}#; therefore as fJ' -+ 00,

Q;vl(O) n ,1: -+ Zv(f-I) n ,1:.
This concludes (i).

We now turn to the proof of (ii). From (3.7),

Let K be any compact subsets of ,1:\Zv(f-') and let p' > 0 be chosen so
that 0 <p' < p => A~, 'F A: and K c A:,. Then on K, q.,(z) =1= 0 and therefore
for 11' sufficiently large, we get Q#.,(z)"* O. Thus we can find 0 > 0 such that
for fJ' sufficiently large,

and

In terms of sup-norm, we obtain for 11' sufficiently large, that

(3.10)

But LAElNnV..(P'/p)IAI ~ n(p'/p)'"'+ 1/(1 - (P'/pnn (see Appendix). By letting
C, be dependent on M, n, 0, p, p', we deduce from (3.10) that on K,

(3.12)
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so that,

- II' pi
lim Ilf(z) - i'rl'v(Z )IIK I' ::;:;; - < 1.

1"""00 P

Now given c > 0, and J.1' sufficiently large, the set,
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But for sufficiently large pi, Q;; (0) is close to Z v(f - 1) in Ll ~ by part (i) and
thus it is sufficient to show that Z v<f -1) is a 2n-dimensional Lebesgue
measure zero set to clinch the result. But this result follows from Lemma 10
in Gunning and Rossi [6, p. 9].

Proof of Theorem 3.2. In the sequel, we shall assume, for simplicity, that
all codimension one polar sections (hyperplanes) are simple in the sense that
there are no "branching points." This effectively means that the unique
factorization of the denominator polynomial Ql'v(z) as a pseudopolynomial
Ql'vvn(i, zn) in zn yields only simple irreducible factors up to a unit factor.

According to the hypothesis of the theorem, for each fixed
aELl~-lccn-l, the poles of the sequence {i'rl'vv/a,zn)}1' are uniformly
bounded w.r.t. a and J.1 in IZnl <p. Thus the Bolzano-Weierstrass theorem,
limit points of poles exist in IZ n I::;:;; p. Such limit points of poles in IZ n I::;:;; P
will be called polar limits. In order to characterize the nonspurious polar
limits as a means of distinguishing them from the spurious ones, we
introduce presently some criteria of admissibility.

First we form a descending chain of subsequences from the sequence
{i'rI'VL'n(a, Zn)} I' of rational approximants,

(3.14)

where J.10<J.1<(;ilk, .. ·,J.1nk)=ilk<ilk+l = (;ilk+l,· ..,J.1nk+l)' k= 1,2,... , and
each denominator pseudopolynomial QiikVVn(a, zn) has degree at most vn.
Each succeeding subsequence must possess the admissible polar limits of the
preceding subsequences in the chain as well as unveil a new admissible polar
limit if the latter is not exhausted. By an admissible polar limit we mean a
uniform polar limit with respect to compact subsets in Ll ~ - I, which

(i) lies in IZ n I<p, and

(ii) belongs to every subsequence in the descending chain.

Under the conditions of allowing only admissible polar limits, the
descending chain (3.14) terminates in accordance with the well-known
descending chain condition. This is because the number of admissible polar
limits (associated with the nonspurous polar limits) are directly constrained
by the degree for the denominator pseudopolynomials which is at most vn'
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We now let ~/a), I";; j";; m, m ,,;; vn be the nonspurious limits distinct in
IZ n I<P which are, in fact, the uniform limit of the following poles of
Jr/lVvn(a, Zn)' say IJI /lia), 1";; j ,,;; m. Note that under the criteria for
admissibility, IJI/lj(i) ~ ¢;(i) uniformly on compact subsets of A;-l as
/1' ~ 00. Now since every subsequence of ll/l rh..(a, zn) converges uniformly to
f(a, zn) on compact subsets of {zn: IZnl <p}\{¢I(a),... , ~m(a)f, we must
therefore have as fl' 4 00,

m m

Jr/lVv/a, Zn) n (z n- IJI /lj(a)) 4 f(a, Zn) n (z" - ~j(a)),
j~1 j~l

uniformly on compact subsets of IZnI < p. If we now define F(z) = F(i, z")
by

m

F(i, zn) =f(i, zn) n (zn - ~/i)),
j~t

then we have to show that F(z) is holomorphic in A; in order to clinch the
result.

Now since IJI /liz) are holomorphic by definition in A:- 1, their uniform
admissible limit ~j(i) on compact subsets of A;-l (with values in IZnl <p)
must be holomorphic also. Using Hensel's lemma (Grauert and
Fritzsche [I]) one retrieves from the polynomial factorization at the point
(a, Zn) E A: given by ITj=1 (Zn - ~ia)) the same decomposition into factors
for the pseudopolynomial in A; given by n;: I (zn - ¢;(i»). Since the ¢.;(i)
are holomorphic the latter product is holomorphic in en and has zero
sections given by UJ=t{zn=¢;(i)l. At each point (a,zn) in
A;\{¢l(a),... , ¢m(a)}, f(a, Zn) is the uniform limit of ll/l VvJa, zn) on compact
subsets and, moreover, f E dr(U), U c A; , an O-neighborhood, but
U (I U;: I {zn = ¢/i)} = 0; it then follows from the connectedness of
A~\Uj= I \zn = ¢}i)}, that f(z) has a holomorphic continuation from U into
A;\Uj=l {zn=¢;(i)}. Hence F(z)=f(z)nj~l (zn-~ii))Edf"(A;)~fE

ml(L/;) with at most vn codimension one polar sections. This concludes the
proof.

ApPENDIX

LEMMA. For 0 < p' < p and fl' = min l<;j<; n(.u),

(P' )1,1.1 (P' )/l'+l/( P')"'\' - ~ n - 1--.
AENn'\E" P P P



(
p' )1.1.1 n

\' - ~ '\
AE~\E~ P i-::.
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Proof Recall that E« = {y E INn: 0 <y <pl. Then

.1.j~:+1 (~ fj kO, (A
j*k

j~l (~ r j +'/ ( 1-~r
~n (~r'+)(l-~r,
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